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Time series of sea-level rise are fitted by a sinusoid of period ~60 years, confirming the cycle reported for the
global mean temperature of the earth. This cycle appears in phase with the Atlantic Multidecadal Oscillation
(AMO). The last maximum of the sinusoid coincides with the temperature plateau observed since the end of
the 20th century. The onset of declining phase of AMO, the recent excess of the global sea ice area anomaly
and the negative slope of global mean temperature measured by satellite from 2002 to 2015, all these indicators
sign for the onset of the declining phase of the 60-year cycle. Once this cycle is subtracted from observations, the
transient climate response is revised downwards consistent with latest observations, with latest evaluations
based on atmospheric infrared absorption and with a general tendency of published climate sensitivity. The en-
hancement of the amplitude of the CO2 seasonal oscillationswhich is found up to 71% faster than the atmospheric
CO2 increase, focus on earth greening and benefit for crops yields of the supplementary photosynthesis, further
minimizing the consequences of the tiny anthropogenic contribution to warming.
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1. Introduction

A cycle of period ~60 years has been reported in global mean tem-
perature of the earth (Schlesinger and Ramankutty, 1994; Ogurtsov
et al., 2002; Klyashtorin and Lyubushin, 2003; Loehle, 2004;
Zhen-Shan and Xian, 2007; Carvalo et al., 2007; Swanson and Tsonis,
2009; Scafetta, 2009; Akasofu, 2010; D'Aleo and Easterbrook, 2010;
Loehle and Scafetta, 2011; Humlum et al., 2011; Chambers et al., 2012;
Lüdecke et al., 2013; Courtillot et al., 2013; Akasofu, 2013; Macias
et al., 2014; Ogurtsov et al., 2015). This cycle and others of smaller am-
plitude were found to be correlated with the velocity of the motion of
the sun with respect to the center of mass of the solar system
(Scafetta, 2009). This cycle is also in phase with AMO index (Knudsen
et al., 2011; McCarthy et al., 2015). Section 2 will search for additional
signatures of this 60-year cycle inmajor components and sensitive indi-
cators of climate. The impact on climate of the CO2 emitted by burning
of fossil fuels is a long-standing debate illustrated by 1637 papers
found in the Web of Science by crossing the keywords

anthropogenic½ � AND greenhouse OR CO2½ � AND warming½ �

This is to be compared to more than 1350 peer-reviewed papers
which express reservations about dangerous anthropogenic CO2

warming and/or insist on the natural variability of climate (Andrew,
2014). The transient climate response (TCR) is defined as the change
in global mean surface temperature at the time of doubling of atmo-
spheric CO2 concentration. The range of uncertainty reported by AR5
(2013) is very wide, 1–2.5 °C. More recent evaluations, later than the
publication of AR5 (2013), focus on low values lying between 0.6 °C
and 1.4 °C (Harde, 2014; Lewis and Curry, 2014; Skeie et al., 2014;
Lewis, 2015). The infrared absorption of CO2 is well documented since
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Fig. 1. Compilation of TCR and ECS climate sensitivity versus year of publication,
complemented from the analyses of Lewis (2015) together with a linear regression of
each set of data — A: Andronova and Schlesinger, 2001, B: Forest et al., 2002, C: Knutti
et al., 2002, D: Gregory et al., 2002, E: Frame et al., 2005, F: Forest et al., 2006, G:
Tomassini et al., 2007, H: Allen et al., 2009, I: Lin et al., 2010, J: Spencer and Braswell,
2010, K: Lindzen and Choi, 2011, L,e: Libardoni and Forest, 2011, M: Olsen et al., 2012,
N,i: Schwartz, 2012, O,g: Aldrin et al., 2012, P: Ring et al., 2012, Q,h: Rogelj et al., 2012,
R,k: Otto et al., 2013, S,l: Lewis, 2013, T: Skeie et al., 2014, U: Lewis and Curry, 2014,
a: Stott and Forest, 2007, b: Knutti and Tomassini, 2008, c: Gregory and Forster, 2008,
d: Meinshausen et al., 2009, f: Padilla et al., 2011, g: Gillett et al., 2012, j: Harris et al.,
2013, m: Skeie et al., 2014, n: Lewis and Curry, 2014, o: Harde (2014).
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the availability of wide-band infrared spectrometry (Ångström, 1900).
Two infrared-active modes of the molecule are allowed by symmetry.
The bending mode at the frequency ν = 20 THz (wavelength 15 μm,
wavenumber 667 cm−1) is of crucial importance because it absorbs
near the maximum of the blackbody radiation

B ν; Tð Þ ¼ 2hν3 n ν;Tð Þ=c2 ð1Þ

if T = 288 K, the mean surface temperature of the earth. n(ν,T) =
(ehν/kBT − 1)−1 is the Bose-Einstein population factor, h the Planck con-
stant, c the velocity of light and kB the Boltzmann constant. The absorp-
tivity of the earth's atmosphere is already 100% at the frequency of this
bending mode. It is independent, therefore, of additional CO2 concen-
trationwhich increased from 0.03% to 0.04% by volume since the begin-
ning of the industrial era. In the wavelength range from 14 to 16 μm, an
atmospheric layer of thickness of ~100 m above the sea-level transmits
less than 0.01% of the earth's radiation (Farmer, 1974; Barrett, 1995;
Hug, 2000; Barrett et al., 2006), leaving very little earth radiation able
to excite CO2 molecules at higher altitudes. A higher CO2 concentration
assumes a smaller air thickness to reach opacity at 20 THz. To bypass
this near saturation, the radiative-convective models (Manabe and
Strickler, 1964) consider the infrared transmittance of an atmospheric
layer no longer at the earth surface but at the top of the atmosphere
(TOA) where it is no longer zero because the pressure is lower. Not
only pressure but also temperature is lower due to the atmospheric
lapse rate. With the aid of convective air currents which transport
heat upward, anthropogenic CO2 is considered in radiative-convective
models to make the upper atmosphere cooler due to the lapse rate, be-
cause the altitude of the upper semi-transparent layer increases with
CO2 concentration. Myrhe et al. (1998) evaluated a radiative forcing of
5.35 LN(2) = 3.7W/m2 in case of CO2 doubling. The factor 5.35 was es-
timated by comparing three radiative-convective models. The resulting
warming would be.

ΔTCO2�2 ¼ TEarthSurf=4� ΔF=ROLR ¼ 288=4� 3:7=238:5 ¼ 1:1 �C ð2Þ

where ROLR = 238.5 W/m2 is the Output Long–wavelength Radiation
(OLR) emitted by the earth/atm system at the TOA. Early versions of cli-
matic models considered the cooling that the earth experienced from
1945 to 1970 and projected more cooling (Rasool and Schneider,
1971). After the onset of the temperature rise from 1980 to 1998,
models abandoned dominant cooling by aerosols and rather insisted
on CO2 greenhouse warming. However Ring et al. (2012) recognize
that the internal climate variability is primarily responsible for the
early 20th century warming from 1910 to 1945 and for the subsequent
cooling from 1945 to 1975. They focus on low values of climate sensitiv-
ity. The higher values and the large extension of the TCR uncertainty
partly comes from the supposed positive feedbacks of water vapor
and clouds which might increase ΔTCO2 × 2 of Eq. (2) in the form.

ΔT f¼ΔTCO2�2= 1− fð Þ ð3Þ

if f is positive and lower than 1. Cloud tuning (Golaz et al., 2013) to
achieve the desired radiation balance is a complementary cause of the
dispersion of TCR. Positive feedbacks due towater vapor, themain infra-
red absorber of the thermal radiation emitted by the earth, were sup-
posed to enhance warming, thus predicting «hot spots» under the
tropics and at both poles. However, no «hot spot» is found in the high
troposphere in subtropical regions (Douglass et al., 2004, 2008;
Christy et al., 2010; Fu et al., 2011). In addition, at the altitude where
the hot spots are expected, the humidity has decreased during the
past 50 years, contrary to the assumption of increased water vapor giv-
ing rise to positive feedbacks. Even the total precipitable water slightly
decreased since 1997 (see Fig. 4 of Vonder Harr et al., 2012), thus show-
ing anticorrelation with an anthropogenic CO2 increase of ~1/3 in the
meantime. The polar amplification predicted by models (AR5, 2013)
will be discussed in Section 2. Conversely, Paltridge et al. (2009);
Lindzen and Choi (2009, 2011); Spencer and Braswell (2010) focus on
negative feedbacks assigned to increased albedo of additional clouds
(Laken and Pallé, 2012) and/or to cooling effect of additional evapora-
tion, lowering ΔTf with respect to ΔTCO2 × 2 in Eq. (3). Lindzen and
Choi (2009, 2011) in particular exploited the observation of the vari-
ability of the radiative energy budget measured at the TOA which is
not captured by models (Wielicki et al., 2002). If precipitating convec-
tive clouds cluster in larger clouds as temperature rise, negative feed-
backs related to an iris effect are expected (Mauritsen and Stevens,
2015). The net effect of lowering of aerosol effects (Stevens, 2015) is a
further reduction of TCR down to a medium estimate of 1.2 °C (Lewis,
2015). This would mean an almost cancelation of feedback parameter
f in Eq. (3). Miskolczi (2007) considers a cancelation by negative feed-
backs. More generally, salient features of atmospheric greenhouse gas
theory have been questioned (Gerlich and Tscheuschner, 2009; Clark,
2010; Kramm and Dlugi, 2011). Atmospheric pressure at the surface
and solar irradiance at the top of the atmosphere were shown to be
the two sole parameters which are sufficient to determine accurately
by dimensional analysis the surface temperature of six planets or satel-
lites of the solar system (Volokin and ReLlez, 2015). This might mean
the almost saturation of greenhouse effect (if any) or negative feed-
backs in atmospheres which are so much different on Earth (0.04% of
CO2), the Moon (no atmosphere), Venus (96% of CO2), Mars, Titan (a
moon of Saturn), and Triton (a moon of Neptune). The controversy
has reached a novel phase because, contrary to CMIP3 and CMIP5
warming projections (AR5, 2013), globalmean temperatures at the sur-
face of the earth display a puzzling « plateau » or « pause » or « hiatus »
since the end of the last century (McKitrick, 2014). This hiatus seems
to have encouraged climate modelers to refrain from exaggerated
warming projections. This is illustrated by (i) a TCR upper limit lower
in AR5 (2013) by 0.5 °C compared to AR4, (ii) lowest values of the
1–2.5 °C TCR range finally judged more likely in Fig. 11.25b of AR5
(2013), (iii) latest evaluations of TCR lying between 0.6 °C and 1.4 °C
(Harde, 2014; Lewis and Curry, 2014; Skeie et al., 2014; Lewis, 2015),
consistent with Eq. (2) and with the low side of AR5 (2013) TCR
range. The tendency at lowering of both TCR and ECS (Equilibrium Cli-
mate Sensitivity) is illustrated in Fig. 1. A linear regression of published
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Fig. 2. (a) Time series of upper and lower uncertainty bars (thin dotted curves) of tide
gauge data reproduced from Fig. 3.14 of AR5 (2013). The heavy full curve is a regression
by a sinusoid of period 62 years of the arithmetic mean complemented after 1992 by
smoothed tide gauge data of Jevrejeva et al. (2014). (b) A fit of a cycle of period 60 years
added to a straight line of slope 0.6 °C per century to HadCRUT4 (2014) global mean
temperature data.

Fig. 3.Global sea ice area anomaly (UIUC, 2015) and regression (full curve) by a sinusoid of
period 61 years. The data point of 2015 integrates data up to August 9.
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data indicates a decrease of ECS by 0.2 °C yr.−1 and a decrease of TCR by
0.1 °C yr.−1. Wunsch and Heimbach (2014) analyzed ocean heat con-
tent down to abyssal depths with the aid of ARGO buoys and focus on
anomalies also tinier than those published previously. They consider
that the uncertainties on an oceanic warming reevaluated down to
0.0004 °C yr.−1 remain too large to support the conjecture of heat sup-
posed hidden in the oceans during the pause. The role of the sun on cli-
mate is emphasized (Le Mouel et al., 2009; Le Mouel et al., 2010;
Lüdecke et al., 2013, 2015; Shaviv, 2015; Andrews et al., 2015). Owing
to the importance of climatic projections for public policy decisionmak-
ing, challenged by the large TCR uncertainties which extend over
0.6–2.5 °C (AR5, 2013 complemented by Fig. 1), a ratio as large as 4.2,
the purpose of this paper is to parameterize a major component of the
natural variability of climate in Section 2 and, once this contribution is
removed from observed climate change, to estimate in Section 3
which fraction remains attributable to the warming of residual anthro-
pogenic CO2. Results will be compared with latest detailed evaluations
ofwarming due to infrared absorption of atmosphere as a function of al-
titude and latitude (Harde, 2014), published after AR5 (2013). The ben-
efit formankind of the favorable impact on crops yields of the enhanced
photosynthesis of anthropogenic CO2 parameterized via the evolution
of the amplitude of seasonal oscillations will be discussed by compari-
son with the risk of dangerous additional CO2 warming in Section 4.

2. 60-year cycle confirmed in sea-level rise and global sea ice area

Fig. 2(a) shows the time series of the sea-level rise. Both thin dotted
curves reproduce the upper and lower limits of the uncertainty range of
tide gauge data analyzed by three groups of authors (Jevrejeva et al.,
2006; Church and White, 2011; Ray and Douglas, 2011), as reproduced
from Fig. 3.14 of AR5 (2013). The arithmetic mean of both upper and
lower curves is complemented after 1992 by more recent smoothed
tide gauge data (Jevrejeva et al., 2014). The heavy full curve is a regres-
sion with a sinusoidal wave form. A period of 62 years is deduced. This
global approach confirms the local oscillations with a period around
60 years reported for a majority of tide gauges (Chambers et al.,
2012). Once this cycle is removed, the average global sea level rise is
1.7–1.8mmyr.−1 as given by tide gauges (NOAA-tide, 2015), consistent
with Fig. 2(a). The periods found for the cycles of sea-level rise is found
similar to the one which fits unfiltered HadCRUT4 (2014) global mean
temperature anomaly in Fig. 2(b), where the sinusoid is added to a lin-
ear contribution of 0.006 °C yr.−1 since 1880. This linear increase is con-
sistent with the latest ascending tangent to the ~248 years cycle
reported by Lüdecke et al. (2015), confirming previous analyses by De
Vries (1958) and Suess (1980). The positions of the extremes in Fig. 2
appear close enough to strongly suggest two signatures of the same
cycle. The amplitude of the sinusoidal contribution in Fig. 2(b) also ap-
pears compatible with the amplitude of the cycle of sea-level rise in
Fig. 2(a) via thermal expansion. This cycle is synchronous with the At-
lantic multidecadal oscillation parameterized via the AMO index
(Knudsen et al., 2011; McCarthy et al., 2015). The time series of the
ocean heat content anomaly and of the earth's radiation imbalance
(Douglass and Knox, 2009) also appear compatible with this 60–
year cycle. Fig. 3 shows the global sea ice area anomaly measured
since the beginning of the satellite era. Daily data of both hemispheres
are added by the Polar Research Group of the University of Illinois
(UIUC, 2015), here summed over each year. The remarkable change of
tendency observed in 2013 and 2014 is to be emphasized. Data are in
excess of themean, contrary to the deficit observed during the previous
decade. This is noticeable not only because global sea ice area is a sensi-
tive indicator of climate, in particular in view of the polar amplification
predicted by models (AR5, 2013), but also because the change of sign
of the anomaly contributes to an increase of the earth albedo and,
therefore, to a cooling component. The recent excess of global sea ice
area/extent anomaly, comes from the addition of two tendencies. (i) A
continuous increase of the Antarctic sea ice area/extent anomaly is
observed. The sea ice extent reached a record high of 20.14 millions of
km2 on September 21, 2014. (ii) The Arctic sea ice area anomaly recov-
ered after the minimum observed at the end of the summer 2012. As a
result of this change of tendency confirmed by temperature data at
low latitudes (Gleisner et al., 2015), instead of the linear regression cur-
rently displayed, a regressionwith a sinusoid has been tried. Results are
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shown in Fig. 3. Half a cycle is found from which a period of 61 years is
extracted, consistent with Fig. 2. Temperatures measured at northern
latitudes 64°–90°N displayed in the upper part of Fig. 7 of Hansen and
Lebedeff (1987) showamaximumaround1940 and aminimumaround
1970, suggesting a previous minimum of Arctic sea ice around 1940,
consistent with Fig. 3. Note that because the Antarctic sea ice area
anomaly increased continuously, the sinusoidal component of Fig. 3
comes from the Arctic contribution, itself consistent with AMO index.
The last maximum observed since the end of the 20th century in
Fig. 2, confirmed by the minimum of global sea ice area anomaly in
Fig. 3, provides a straightforward understanding of the temperature pla-
teau without the need to invoke other factors such as a change of earth
albedo related to aerosols emitted by volcanic eruptions, or other natu-
ral phenomenawhich are ruled out because they are random, not cyclic.
Besides, the four following indicators sign for the onset of the declining
phase of the 60-year cycle.

(i). The recent change of sign of global sea ice area anomaly which
reveals an excess in Fig. 3, a sensitive indicator of climate, is un-
expected from model projections (AR5, 2013).

(ii). The AMO index indicates the onset of a declining phase.
(iii). A negative temperature slope is measured from 2002 to 2015 in-

dependently by different satellites in the low troposphere by Re-
mote Sensing System (RSS, 2015) and by UAH (Spencer et al.,
2015) as shown in Fig. 4. The plot is voluntarily restricted to
13 years, viz. less than 1/4 of the 60 year-cycle, to evaluate the
sign of the tangent to the sinusoid.

(iv). A deceleration of the sea-level rise measured by satellite altime-
try is also found since 2002 (Chen et al., 2014; Cazenave et al.,
2014).

3. Anthropogenic CO2 warming

The average CO2 increase in the atmosphere,measured accurately by
infrared spectrometry at Mauna Loa (NOAA, 2015), is 1.99 part per mil-
lion (ppm) per year from 1995 to 2014, viz. 1.99/400= 0.5% yr.−1. The
largest yearly increase observed in 1998, nearly 3 ppm, followed the
largest El Niño warm fluctuation by 10 months. Other CO2 increases
above the mean such as 2.52 ppm in 2005, 2.42 ppm in 2010,
2.65 ppm in 2012 or 2.28 ppm in 2014, also follow by 9–11 months
(Humlum et al., 2013) El Niño temperature fluctuations parameterized
via the Multivariate ENSO (El Niño Southern Oscillation) index (MEI,
Fig. 4. Linear regression of RSS TLT (RSS, 2015) and UAH LT (Spencer et al., 2015) earth
surface temperature anomaly measured by different satellites, independently. To
corroborate the estimate of the tangent to the sinusoid of Fig. 2(b) during the latest
years, 13 years are chosen here because the time series has to be as long as possible but
remain shorter that 1/4 of the 60–year cycle. Both slopes show a negative sign which
confirms each other.
2014). The relationship is confirmed for negativeMEI indiceswhich cor-
respond to La Niña fluctuations such as those in 1999–2001 or 2008.
They match low CO2 yearly increases of 0.93–1.6 ppm and 1.6 ppm, re-
spectively. However, the apparent correlation of yearly CO2 increases
with MEI or with Southern Oscillation Index (SOI) (Zeng et al., 2005)
is questioned by the case of the year 1992which shows a yearly CO2 in-
crease 7 times smaller than the largest one of 1998whereas theMEI was
positive due to El Niño. The earth indeed experienced in 1992 a temper-
ature drop as large as−0.5 °C due to the aerosols emitted by the erup-
tion of Mount Pinatubo volcano which momentarily attenuated the
solar flux. The correlation of yearly CO2 increase, therefore, appears
not with MEI or SOI but with global mean temperature to which El
Niño and La Niña contribute. This temperature/CO2 correlation may be
tentatively explained, at least partly, by the solubility of CO2 into
water which decreases with temperature, consistent with sea pH
maps (Byrne et al., 2010).Warm temperature fluctuations favor CO2 re-
lease from the oceans which contain 60 timesmore CO2 than the atmo-
sphere (AR5, 2013), whereas cooler fluctuations favor its oceanic
capture. The very small CO2 increase of 0.14% yr.−1 observed in 1992
might be viewed as an upper estimate of the residual anthropogenic ad-
dition in the atmosphere after action of carbon sinks favored by low
temperatures. The correlation of yearly CO2 increases with temperature
fluctuations, and their lag of severalmonths (Humlumet al., 2013)were
discussed elsewhere (Park, 2009; Beenstock et al., 2012, Salby, 2012,
Gervais, 2014). Note that the decrease of oceanic alkalinity (pH ~ 8)
due to the increased CO2 partial pressure has been reported as
ΔpH=−0.0017 yr.−1 (Byrne et al., 2010). By using latest TCR findings
(Harde, 2014; Lewis and Curry, 2014; Skeie et al., 2014; Lewis, 2015)
consistent with Eq. (2), with the lowest value of the TCR range consid-
ered more likely in Fig. 11.25b (AR5, 2013) and with the tendency of
Fig. 1, an anthropogenic warming of

0:6–1:4 �Cð Þ � 0:0014−0:005 yr−1� �� 85 yrs ¼ 0:1–0:6 �C

is extrapolated in 2100. The purpose of this crude estimate is to focus on
the same order of magnitude as the natural variability through parame-
ters extracted from Fig. 2(b). The temperature increase in each ascend-
ing phase of the cycle in the 1930s and in the 1990s, indeed is 0.6 °C as
shown in Fig. 2(b) although CO2 emissions were ~6 times lower in the
1930s compared to the 1990s. CMIP3 and CMIP5 climate models
which fit data in the second ascending phase conversely are unable to
reproduce the observations in the first ascending phase from 1910 to
1940 as shown in Fig. TS.9(a) of AR5 (2013) and after 1998. The slope
of the linear contribution observed since 1880 in Fig. 2(b) is 0.6 °C per
century although CO2 emissions have been multiplied by ~10 in the
meantime. In particular, no detectable change of slope is found before
and after the onset of large CO2 emissions around 1950.

Fig. 5 reproduces the TLS channel temperature measured by RSS
(2015) in the low stratosphere (LS) plotted versus atmospheric CO2

concentration (NOAA, 2015). The plot concentrates on the past
22 years because (i) the previous period displayed in the inset shows
peaks related to major volcanic eruptions which complicate the analy-
sis, (ii) 22 years correspond to not less than 50% of the CO2 increase
since 1959 measured accurately at Mauna Loa (NOAA, 2015) and to
~40% of the CO2 increase estimated since the beginning of the industrial
era. In spite of this large CO2 increase, no temperature change is ob-
served after 1993, although it is measured at the altitude where the
most marked signature of temperature change predicted by radiative–
convective models is expected. Models indeed expect a temperature
change as large as 6.6 °C just above the tropopause in case of CO2 in-
crease from 280 ppm to 400 ppm (Sloan and Wolfendale, 2013, see in
particular their Fig. 1). Contrary to this prediction, the LS hiatus is
found to extend over 23 years, even longer than the LT hiatus. Recent
detailed evaluations based on the infrared absorption of atmosphere
at different latitudes, altitudes and pressures, reported 0.2 °C for the an-
thropogenic warming during the twentieth century (Harde, 2014). This
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Fig. 5. Plateau of RSS (2015) TLS temperature measured by satellite in the low
stratosphere since 1993 (the inset shows all available data) plotted versus atmospheric
CO2 concentration (NOAA 2015) showing the absence of discernible correlation in a
period corresponding to not less than ~40% of all the CO2 emitted since the beginning of
the industrial era.

Fig. 6. Increase by 36% of the amplitude of the seasonal northern–hemisphere spring–
summer drop of CO2 atmospheric concentration measured at La Jolla, California
(SCRIPPS, 2014). This enhancement is 71% faster than the increase of atmospheric CO2

concentration, 21%, over the same period.
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is consistent with a minor fraction of the slope of 0.6 °C per century of
the linear contribution found since 1880 from the fit to Fig. 2(b). The re-
maining is attributable to the variability of the solar irradiance and to
mechanisms which may amplify it (Le Mouel et al., 2009, 2010;
Lüdecke et al., 2013, 2015; Shaviv, 2015). The key points of Harde
(2014) deal with several mechanisms pointing towards the almost sat-
uration of CO2warming. In particular, since theCO2 infrared linewidth is
broadened by pressure in the low troposphere, there is no earth radia-
tion left for thewings of narrower lines at the TOA because it is absorbed
below. In addition, the overlap of the CO2 band at 20 THz and of the
water vapor spectrum minimizes the additional absorption. Harde
(2014) reports a warming of 0.6 ± 0.1 °C in case of CO2 doubling. This
is consistent with the absence of temperature change for the CO2 con-
centration range displayed in Fig. 5, whereas a TCR much larger would
be hardly compatible with observations. At the present rate of
0.005 yr.−1 of CO2 increase, a TCR of 0.6 °C implies a warming of
~0.3 °C in 2100. This is so tiny compared for example to the diurnal or
seasonal temperature variability, or to that related to latitude, that the
replacement of the observed mean value of 0.005 yr.−1 by the estimate
of anthropogenic residual of 0.0014 yr.−1 observed in 1992 would not
much change the conclusions.

4. Enhancement of amplitude of CO2 seasonal oscillations

Fig. 6 illustrates the increase of the amplitude of the CO2 seasonal os-
cillationsmeasured in 2013 compared to earlymeasurements of 1969 at
La Jolla, California (SCRIPPS, 2014). The drop of CO2 concentration expe-
rienced each year fromMay to August is the signature of the amplitude
of the spring–summer enhanced photosynthesis in the northern hemi-
sphere (where the vegetation area is larger than in the southern hemi-
sphere). The amplitude of the seasonal oscillation is found very small in
the Antarctic for lack of surrounding vegetation (SCRIPPS, 2014). It is
medium at Mauna Loa in the middle of the Pacific Ocean. It is larger in
green areas. The increase of the amplitude observed in 2013 compared
to 1969 in Fig. 6, is found up to 36% larger. The CO2 contentmeasured at
Mauna Loa increased by 21% in themeantime. The pointwhich seems to
be of importance is that the ratio of both increases is 36/21= 1.71with
no precursor sign of saturation, meaning that the amplitude of the sea-
sonal oscillation increased 71% faster than that of the atmospheric CO2.
This illustrates how much flora appreciates this food supplement, as
confirmed by other methods (Bellassen et al., 2011; Clay et al., 2012;
Pretzsch et al., 2014). The whole earth is growing greener as also ob-
served from space. The benefit of additional CO2 even concerns arid
areas (Metcalfe, 2014). Amplified fertilization of nutritive plants by ad-
ditional photosynthesis related to the CO2 increase at the present rate of
2/400 = 0.5% yr.−1 is to be emphasized since it is already exploited in
CO2-enriched greenhouses. The profit for mankind since 1961 has
been estimated to $3.2 trillions over the period from 1961 to 2011
(CO2Science, 2013 and references therein which detail the benefit for
nutritive plants).

5. Summary

Dangerous anthropogenic warming is questioned (i) upon recogni-
tion of the large amplitude of the natural 60–year cyclic component
and (ii) upon revision downwards of the transient climate response
consistent with latest tendencies shown in Fig. 1, here found to be at
most 0.6 °C once the natural component has been removed, consistent
with latest infrared studies (Harde, 2014). Anthropogenic warming
well below the potentially dangerous range were reported in older
and recent studies (Idso, 1998; Miskolczi, 2007; Paltridge et al., 2009;
Gerlich and Tscheuschner, 2009; Lindzen and Choi, 2009, 2011;
Spencer and Braswell, 2010; Clark, 2010; Kramm and Dlugi, 2011;
Lewis and Curry, 2014; Skeie et al., 2014; Lewis, 2015; Volokin and
ReLlez, 2015). On inspection of a risk of anthropogenic warming thus
toned down, a change of paradigm which highlights a benefit for man-
kind related to the increase of plant feeding and crops yields by en-
hanced CO2 photosynthesis is suggested.
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